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Anisotropic thermal conductivity of a fluid in a system of microscopic slit pores
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We report nonequilibrium-molecular-dynamics studies of a simple fluid in an infinite system of plane
slit micropores, with walls of variable permeability. Our results show that the thermal conductivity of
fluids in such constrained geometry can exhibit strong anisotropy, especially when the pore walls are al-
most impermeable. We show this in simulations of fluid systems for substances that are only anisotropic

on an atomic, as opposed to a macroscopic, scale.

PACS number(s): 44.30.+v, 66.60.+a

INTRODUCTION

Recently, we reported an alternative technique for
studying fluids in constrained flow geometries, such as
micropores [1,2]. The method permits the permeability
of the wall to the enclosed fluid to be controlled precisely,
while maintaining the atomic nature of the wall. We
have already reported on the anisotropy of the self-
diffusion coefficient as a function of the permeability of
the walls (see Fig. 3 for a typical result). We have now
used this alternative method, in conjunction with the
nonequilibrium-molecular-dynamics technique (NEMD)
[3-5], to examine the thermal conductivity of a
Lennard-Jones fluid in a slit micropore. Our results
clearly show that thermal conductivity in such systems is
anisotropic. We are unaware of any previous simulations
or experiments that have indicated such anisotropy of
thermal conductivity in fluid systems, although anisotro-
py has been observed for diffusion coefficients in both
simulation [1,6,7] and experiment [7,8].

METHOD

Both the method for studying fluids in confined
geometries and the nonequilibrium-molecular-dynamics
technique have been described in detail in other recent
publications [1-5], so we will only provide a brief sum-
mary here.

The simulation is based on the usual algorithm, in
which all particles are initially at their fcc sites in the
basic replicated cube of side L. To form the walls of the
slit pore, all particles on one yz face of the cube are per-
manently tethered to their initial fcc sites by a tethering
potential

¢’;~(d*):%K*d*2, (1)

where d*=d /o is the reduced scalar distance between
the center of mass of a tethered particle and the tether
site, and K*=Ko2/e, where K is the force constant,
which, as will be shown later, is an effective parameter
for controlling the wall permeability. € and o are the in-
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teraction energy and distance parameters for the
Lennard-Jones shifted-force (LJSF3) intermolecular po-
tential, with a cutoff distance of 3.0. This potential acts
between all particles, including those that are tethered.
Such a scheme would, for example, in a 108-particle
simulation, lead to 18 particles being tethered to form a
slit pore wall. However, because of the periodic bound-
ary conditions, this actually generates an infinite system
of infinite parallel plane walls, with separation L [1].
Such a model leads to a realistic description of a slit pore
system, as was found in our previous investigations using
this model to study properties such as density profiles,
diffusion coefficients, and wall permeabilities. The results
obtained were found to reproduce all the main features of
previous experimental and theoretical studies [1,2]. The
diffusion of the atoms in many such systems has been
studied in considerable detail [1,2]. For this transport
property, thermal conductivity, we find it more con-
venient and more computationally effective to use the
NEMD method rather than the correlation-time method
which is conventional for homogeneous liquids [9] just as
it was not suitable for the diffusion measurements.

The NEMD method creates an effective gradient in the
system via an external field, and the resulting flux is mea-
sured to calculate the desired linear response. The equa-
tions of motion that need to be solved are [3,5]

I,=p;/m, @
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where f;;=—3d¢;;/9r;, and ¢,; is the intermolecular in-

teraction between all particles in the system. r; is the po-
sition vector of particle 7, p; is its momentum, E; is its en-
ergy, and E is the average energy per particle.
r;=r;—r; and N is the number of particles in the basic
simulation cell. F is the external field, which in our case

is kept constant with time. Also, in our case F had only
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one nonzero Cartesian component at a time, that being
along the direction in which we wished to calculate the
thermal conductivity. « is the usual thermostatting mul-
tiplier [3,5] to ensure constant total translational kinetic
energy, i.e., to maintain the temperature constant in spite
of the dissipative perturbation. It should be noted that
this ingenious scheme [3,4] does not actually apply a tem-
perature gradient. This would give at best a k-dependent
thermal conductivity where k;, =27 /L, L being typical-
ly 20 A in our simulation. It yields the kK —0, i.e., the
macroscopic thermal conductivity. The external ﬁeld F,
plays the role of grad InT, in the zero-field limit [cf. Eq.
(4)] in the usual Fourier heat-flow formula.

The thermal conductivity perpendicular to the pore
wall could then be obtained from A,, which is A, in our
case,

1 (JAt— o))
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where T is the temperature. The heat-flux vector, J< is
given by

JQ:L

v , (5)
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where ¥V=L3 is the volume of the simulation cube. We
similarly calculate k,|=ky =A,, the thermal conductivity
in directions parallel to the partially permeable walls.

The values of A reported are thought to have an uncer-
tainty of about +10%. The uncertainty can, of course,
be reduced by performing longer runs. It should be noted
that the thermal conductivity reported here is for the en-
tire system, not just for the liquid, as this is the property
of interest in such systems and the one most likely to be
measured experimentally. One could also calculate the
thermal conductivity of the fluid away from the pore wall
(where the fluid molecules only interact with other fluid
molecules). However, that would not really be the true
thermal conductivity of the fluid inside the pore, since
the fluid far from the pore walls behaves almost like a
homogeneous fluid [2]. Near the wall, as can be seen
from Eq. (5), the contributions from the fluid and the wall
can only be separated on an ad hoc basis which we pre-
ferred not to do. On the other hand, the diffusion
coefficient is for liquid only since the wall molecules do
not diffuse but only vibrate.

RESULTS AND DISCUSSION

All simulations had 108 particles in the basic cell, with
p*=po*=0.5, T*=kT/e=1.0. Then, L*=L /0=6.0.
The simulation consisted of 200000 time steps of size
At*=0.001, where t*=(e/mo?)"?t, after 50000 reject-
ed equilibration steps. The usual tests to ensure non-
dependence of the thermal conductivity values on the
magnitude of the external field strength were also carried
out. In fact, F* varied from 0.05 to 0.10 in our simula-
tions which satisfied this criterion.

For K* small, e.g., for our lowest value 1, the tethered
particles are almost as free to move as the ““free” particles
and then we expect that A, ~A ~Ap where Ay is the
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FIG. 1. Thermal conductivity A of a Lennard-Jones (LJ SF 3)
liquid confined in an infinite system of infinite plane atomic
pores. The mean number density is 0.50 ~* and the temperature
is 1.0e/kp. The slit walls have a spacing of 60. The spring con-
stant of the tethered atoms of the wall is K *¢/02. For K* <10
the walls are permeable to the liquid atoms and for K * > 1000
they are almost impermeable. A=(kg/0,)(e/m)!/?A*. Ay is
for the homogeneous “free” liquid (K =0). A, is for heat flow
perpendicular to the slit walls. A is for heat flow parallel to the
slit walls. The error of measurement is about +10%. The
points are joined by lines to guide the eye.

thermal conductivity of the corresponding homogeneous
liquid. This is found to be so since we know that for this
LISF3 fluid in this state, A% =(02/kp)(m/e)'"’Ay
=2.1, as we observe (see Fig. 1). It is clear from the
geometry and from the behavior of the diffusion
coefficient (see Fig. 2), that the passage of particles
through the walls is quite severely restricted when
K* =100 and levels off at a low value, about 15% of the
free-liquid value, for K*=>1000, as indicated by the
behavior of D . D, however, is almost unaffected by the
permeability of the walls to particles.

In the case of thermal conductivity both A and A, are
reduced with decreasing permeability of the walls (see
Fig. 1). A, is less affected than A, as might be expected
and falls to about 75% for K* =500 whereas A, falls to

about 20% of the unconstrained-liquid value for
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FIG. 2. For comparison, the components of the diffusion
coefficient tensor D, and D for the same system as in Figs. 1
and 3. D*=(m/ec?)'/?D.
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FIG. 3. As for Fig. 1, but plotted versus K on a logarithmic
scale and for the anisotropy of the thermal conductivity,
A, =MA,/\. For comparison the anisotropy of the diffusion
coefficient A, =D, /D) is also shown.

K*>2000.

The corresponding anisotropy of the thermal conduc-
tivity, 43 =A,/A, as a function of K, on a logarithmic
scale, is shown in Fig. 3. For comparison, we also show
the anisotropy of the diffusion constant A4,=D, /D,.
A p falls more or less steadily as K increases (logarithmic-
ally), whereas A, tends to remain near unity until
K*=100, i.e., A, and k” fall together at first. But then
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the anisotropy sets in relatively abruptly. However, the
limiting anisotropy is smaller than for diffusion. This
behavior is as might be expected because restriction of
the flow of atoms through the walls of the pore directly
reduces the diffusion coefficient. The effect of changes of
the permeability of the walls to particles is less effective
in reducing the flow of energy because the flow is only in
part translational, i.e., carried by the particles them-
selves. The translational part [first term in Eq. (5)] is, in
fact, roughly one quarter of the total thermal conductivi-
ty only. The other potential part is carried through space
by the interactions between the particles in the liquid and
between the liquid particles and the wall particles. It is
not particularly simple to explain the thermal conductivi-
ty of a homogeneous liquid [10]. We shall not attempt a
quantitative explanation of the effective anisotropic
thermal conductivity of this perturbed, constrained liquid
in this preliminary report.
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